Acoustic scattering from double-diffusive microstructure.
نویسندگان
چکیده
Laboratory measurements of high-frequency broadband acoustic backscattering (200-600 kHz) from the diffusive regime of double-diffusive microstructure have been performed. This type of microstructure, which was characterized using direct microstructure and optical shadowgraph techniques, is identified by sharp density and sound speed interfaces separating well-mixed layers. Vertical acoustic backscattering measurements were performed for a range of physical parameters controlling the double-diffusive microstructure. The echoes have been analyzed in both the frequency domain, providing information on the spectral response of the scattering, and in the time domain, using pulse compression techniques. High levels of variability were observed, associated with interface oscillations and turbulent plumes, with many echoes showing significant spectral structure. Acoustic estimates of interface thickness (1-3 cm), obtained for the echoes with exactly two peaks in the compressed pulse output, were in good agreement with estimates based on direct microstructure and optical shadowgraph measurements. Predictions based on a one-dimensional weak-scattering model that includes the actual density and sound speed profiles agree reasonably with the measured scattering. A remote-sensing tool for mapping oceanic microstructure, such as high-frequency broadband acoustic scattering, could lead to a better understanding of the extent and evolution of double-diffusive layering, and to the importance of double diffusion to oceanic mixing.
منابع مشابه
Sound scattering from oceanic turbulence
[1] The first near coincident measurements of acoustic backscatter and temperature/velocity microstructure confirm theoretical predictions that oceanic turbulence scatters sound. Not only are acoustic backscatter at 307 kHz and turbulent microstructure unambiguously correlated on a patch-by-patch basis, but measured scattering amplitudes agree with theoretical predictions for scattering from tu...
متن کاملRemote Sensing of Temperature and Salinity Microstructure in Rivers and Estuaries Using Broadband Acoustic Scattering Techniques
The long-term goals of this research are to 1) measure and understand high-frequency broadband acoustic scattering in rivers and estuaries characterized by strong temperature and salinity gradients and intermittent, high dissipation rates of turbulent kinetic energy, and 2) use these measurements and understanding to develop a remote sensing tool for quantifying the structure of stratified turb...
متن کاملHigh-frequency acoustic scattering from turbulent oceanic microstructure: the importance of density fluctuations.
Acoustic scattering techniques provide a unique and powerful tool to remotely investigate the physical properties of the ocean interior over large spatial and temporal scales. With high-frequency acoustic scattering it is possible to probe physical processes that occur at the microstructure scale, spanning submillimeter to centimeter scale processes. An acoustic scattering model for turbulent o...
متن کاملStratification and Double-Diffusive Convection in the Bab-el-Mandeb Strait during Winter Monsoon
Investigation of stratification in marine environments is always considered by researchers. In this study double-diffusive convection and stratification in the Bab el Mandeb strait is investigated by analyzing of field data. Measurement of seawater temperature and salinity from ARGO project (2009 to2014) and also R-V Knorr (2001) cruise with the daily average of seawater temperature and salinit...
متن کاملDouble diffusive reaction-convection in viscous fluid layer
In the present study, the onset of double diffusive reaction-convection in a uid layer with viscous fluid, heated and salted from below subject to chemical equilibrium on the boundaries, has been investigated. Linear and nonlinear stability analysis have been performed. For linear analysis normal mode technique is used and for nonlinear analysis minimal representation of truncated Fourier serie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 122 3 شماره
صفحات -
تاریخ انتشار 2007